
Model selection

Model selection in machine learning is the process of selecting the best algorithm

and model architecture for a specific job or dataset. It entails assessing and

contrasting various models to identify the one that best fits the data & produces the

best results.

Model selection is a process that can be applied both across different types of

models (e.g. logistic regression, SVM, KNN, etc.) and across models of the same

type configured with different model hyperparameters (e.g. different kernels in an

SVM).

k-Fold Cross-Validation

Cross-validation is a resampling procedure used to evaluate machine learning

models on a limited data sample.

If you have a machine learning model and some data, you want to tell if your model

can fit. You can split your data into training and test set. Train your model with the

training set and evaluate the result with test set. But you evaluated the model only

once and you are not sure your good result is by luck or not. You want to evaluate

the model multiple times so you can be more confident about the model design.

The procedure has a single parameter called k that refers to the number of groups

that a given data sample is to be split into. As such, the procedure is often called k-

fold cross-validation. When a specific value for k is chosen, it may be used in place

of k in the reference to the model, such as k=10 becoming 10-fold cross-validation.

Cross-validation is primarily used in applied machine learning to estimate the skill of

a machine learning model on unseen data. That is, to use a limited sample in order

to estimate how the model is expected to perform in general when used to make

predictions on data not used during the training of the model.

It is a popular method because it is simple to understand and because it generally

results in a less biased or less optimistic estimate of the model skill than other

methods, such as a simple train/test split.

Note that k-fold cross-validation is to evaluate the model design, not a particular

training. Because you re-trained the model of the same design with different training

sets.

The general procedure is as follows:

1. Shuffle the dataset randomly.

2. Split the dataset into k groups

3. For each unique group:

1. Take the group as a hold out or test data set

2. Take the remaining groups as a training data set

3. Fit a model on the training set and evaluate it on the test set

4. Retain the evaluation score and discard the model

4. Summarize the skill of the model using the sample of model evaluation scores

Importantly, each observation in the data sample is assigned to an individual group

and stays in that group for the duration of the procedure. This means that each

sample is given the opportunity to be used in the hold out set 1 time and used to

train the model k-1 times.

Worked Example

To make the cross-validation procedure concrete, let’s look at a worked example.

Imagine we have a data sample with 6 observations:

1 [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]

The first step is to pick a value for k in order to determine the number of folds used to

split the data. Here, we will use a value of k=3. That means we will shuffle the data

and then split the data into 3 groups. Because we have 6 observations, each group

will have an equal number of 2 observations.

For example:

1

2

3

Fold1: [0.5, 0.2]

Fold2: [0.1, 0.3]

Fold3: [0.4, 0.6]

We can then make use of the sample, such as to evaluate the skill of a machine

learning algorithm.

Three models are trained and evaluated with each fold given a chance to be the held

out test set.

For example:

 Model1: Trained on Fold1 + Fold2, Tested on Fold3

 Model2: Trained on Fold2 + Fold3, Tested on Fold1

 Model3: Trained on Fold1 + Fold3, Tested on Fold2

The models are then discarded after they are evaluated as they have served their

purpose.

The skill scores are collected for each model and summarized for use.

Bias–variance tradeoff

In statistics and machine learning, the bias–variance tradeoff describes the

relationship between a model's complexity, the accuracy of its predictions, and how

well it can make predictions on previously unseen data that were not used to train

the model. In general, as we increase the number of tuneable parameters in a

model, it becomes more flexible, and can better fit a training data set. It is said to

have lower error, or bias. However, for more flexible models, there will tend to be

greater variance to the model fit each time we take a set of samples to create a new

training data set. It is said that there is greater variance in the

model's estimated parameters.

The bias–variance dilemma or bias–variance problem is the conflict in trying to

simultaneously minimize these two sources of error that prevent supervised

learning algorithms from generalizing beyond their training set:

 Bias: The bias error is an error from erroneous assumptions in the

learning algorithm. High bias can cause an algorithm to miss the relevant

relations between features and target outputs (underfitting).

A systematic error that occurs in the machine learning model itself due to

incorrect assumptions in the ML process. Technically, we can define bias as

the error between average model prediction and the ground truth.

 Variance: The variance is an error from sensitivity to small fluctuations in the

training set. High variance may result from an algorithm modeling the

random noise in the training data (overfitting).

How much the model can adjust depending on the given data set. Variance

refers to the changes in the model when using different portions of the training

data set.

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Bias_of_an_estimator
https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Training_set
https://en.wikipedia.org/wiki/Bias_of_an_estimator
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Noise_(signal_processing)
https://en.wikipedia.org/wiki/Overfitting

Vaiance

The bias–variance tradeoff is a central problem in supervised learning. Ideally, one

wants to choose a model that both accurately captures the regularities in its training

data, but also generalizes well to unseen data. Unfortunately, it is typically

impossible to do both simultaneously. High-variance learning methods may be able

to represent their training set well but are at risk of overfitting to noisy or

unrepresentative training data. In contrast, algorithms with high bias typically

produce simpler models that may fail to capture important regularities (i.e. underfit) in

the data.

B

i

a

s

The model is too simple to

capture the data’s trends

and too sensitive, Capturing

noise as well.

The model is too sensitive

and is capturing noise as if it

were a real trend.

(overfiting)

The model is too simple and

does not capture the

underlying trend of the data.

Great model. It accurately

captures the underlying trends

of the data and generalizes well

to unseen data.

https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Generalization

