
Model selection 

Model selection in machine learning is the process of selecting the best algorithm 

and model architecture for a specific job or dataset. It entails assessing and 

contrasting various models to identify the one that best fits the data & produces the 

best results. 

Model selection is a process that can be applied both across different types of 

models (e.g. logistic regression, SVM, KNN, etc.) and across models of the same 

type configured with different model hyperparameters (e.g. different kernels in an 

SVM). 

k-Fold Cross-Validation 

Cross-validation is a resampling procedure used to evaluate machine learning 

models on a limited data sample. 

If you have a machine learning model and some data, you want to tell if your model 

can fit. You can split your data into training and test set. Train your model with the 

training set and evaluate the result with test set. But you evaluated the model only 

once and you are not sure your good result is by luck or not. You want to evaluate 

the model multiple times so you can be more confident about the model design. 

The procedure has a single parameter called k that refers to the number of groups 

that a given data sample is to be split into. As such, the procedure is often called k-

fold cross-validation. When a specific value for k is chosen, it may be used in place 

of k in the reference to the model, such as k=10 becoming 10-fold cross-validation. 

Cross-validation is primarily used in applied machine learning to estimate the skill of 

a machine learning model on unseen data. That is, to use a limited sample in order 

to estimate how the model is expected to perform in general when used to make 

predictions on data not used during the training of the model. 

It is a popular method because it is simple to understand and because it generally 

results in a less biased or less optimistic estimate of the model skill than other 

methods, such as a simple train/test split. 

Note that k-fold cross-validation is to evaluate the model design, not a particular 

training. Because you re-trained the model of the same design with different training 

sets. 

The general procedure is as follows: 

1. Shuffle the dataset randomly. 

2. Split the dataset into k groups 

3. For each unique group: 

1. Take the group as a hold out or test data set 

2. Take the remaining groups as a training data set 

3. Fit a model on the training set and evaluate it on the test set 



4. Retain the evaluation score and discard the model 

4. Summarize the skill of the model using the sample of model evaluation scores 

Importantly, each observation in the data sample is assigned to an individual group 

and stays in that group for the duration of the procedure. This means that each 

sample is given the opportunity to be used in the hold out set 1 time and used to 

train the model k-1 times. 

 

 

Worked Example 

To make the cross-validation procedure concrete, let’s look at a worked example. 

Imagine we have a data sample with 6 observations: 

1 [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] 

The first step is to pick a value for k in order to determine the number of folds used to 

split the data. Here, we will use a value of k=3. That means we will shuffle the data 

and then split the data into 3 groups. Because we have 6 observations, each group 

will have an equal number of 2 observations. 

For example: 

1 

2 

3 

Fold1: [0.5, 0.2] 

Fold2: [0.1, 0.3] 

Fold3: [0.4, 0.6] 

We can then make use of the sample, such as to evaluate the skill of a machine 

learning algorithm. 

Three models are trained and evaluated with each fold given a chance to be the held 

out test set. 

For example: 

 Model1: Trained on Fold1 + Fold2, Tested on Fold3 



 Model2: Trained on Fold2 + Fold3, Tested on Fold1 

 Model3: Trained on Fold1 + Fold3, Tested on Fold2 

The models are then discarded after they are evaluated as they have served their 

purpose. 

The skill scores are collected for each model and summarized for use. 



Bias–variance tradeoff 

 

In statistics and machine learning, the bias–variance tradeoff describes the 

relationship between a model's complexity, the accuracy of its predictions, and how 

well it can make predictions on previously unseen data that were not used to train 

the model. In general, as we increase the number of tuneable parameters in a 

model, it becomes more flexible, and can better fit a training data set. It is said to 

have lower error, or bias. However, for more flexible models, there will tend to be 

greater variance to the model fit each time we take a set of samples to create a new 

training data set. It is said that there is greater variance in the 

model's estimated parameters. 

The bias–variance dilemma or bias–variance problem is the conflict in trying to 

simultaneously minimize these two sources of error that prevent supervised 

learning algorithms from generalizing beyond their training set: 

 Bias: The bias error is an error from erroneous assumptions in the 

learning algorithm. High bias can cause an algorithm to miss the relevant 

relations between features and target outputs (underfitting). 

A systematic error that occurs in the machine learning model itself due to 

incorrect assumptions in the ML process. Technically, we can define bias as 

the error between average model prediction and the ground truth. 

 Variance: The variance is an error from sensitivity to small fluctuations in the 

training set. High variance may result from an algorithm modeling the 

random noise in the training data (overfitting). 

How much the model can adjust depending on the given data set. Variance 

refers to the changes in the model when using different portions of the training 

data set. 
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Vaiance 

 

 

The bias–variance tradeoff is a central problem in supervised learning. Ideally, one 

wants to choose a model that both accurately captures the regularities in its training 

data, but also generalizes well to unseen data. Unfortunately, it is typically 

impossible to do both simultaneously. High-variance learning methods may be able 

to represent their training set well but are at risk of overfitting to noisy or 

unrepresentative training data. In contrast, algorithms with high bias typically 

produce simpler models that may fail to capture important regularities (i.e. underfit) in 

the data. 
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The model is too simple to 

capture the data’s trends 

and too sensitive, Capturing 

noise as well. 

The model is too sensitive 

and is capturing noise as if it 

were a real trend. 

(overfiting) 

The model is too simple and 

does not capture the 

underlying trend of the data. 

Great model. It accurately 

captures the underlying trends 

of the data and generalizes well 

to unseen data. 
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